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We investigate distinguishability (measured byfidelity) of the initial and the final state
of a qubit, which is an object of the so-called nonideal quantum measurement of the first
kind. We show that the fidelity of a nonideal measurement can be greater than the fidelity
of the corresponding ideal measurement. This result is somewhat counterintuitive, and
can be traced back to thequantum parallelismin quantum operations, in analogy with the
quantum parallelism manifested in the quantum computing theory. In particular, as the
quantum parallelism in quantum computing underlies efficient quantum algorithms, the
quantum parallelism in quantum information theory underlies the classically unexpected
increase of fidelity.
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1. INTRODUCTION: FIDELITY AND QUANTUM MEASUREMENT

One of the main topics in the quantum computer studies (Grover, 1997; Kitaev
et al., 1999; Shor, 1997) is the task of storing a single qubit’s state (e.g., in the quan-
tum computer’s memory) versus the unavoidable influence of the qubit’s environ-
ment resulting in various kinds of the “quantum operations” on a qubit. Needless to
say, the efforts performed in this regard should make implementation of the error-
correction strategies and methods easier and hopefully more efficient (DiVincenzo,
1996; Dugić, 2000; Ekert and Macchiavello, 1996; Shor, 1995; Steane, 1996; Viola
and Lloyd, 1998; Zanardi and Rasetti, 1997).

The “quantum operations” (Kraus, 1983) generally result in an uncontrollable
change of the qubit’s state which is characterized by the decrease infidelity(Kraus,
1983; Uhlman, 1976). The latter is a useful measure of distinguishability of the
initial and the final qubit’s states, yet not representing a metric in the Hilbert state
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space of the qubit. More precisely, fidelity is defined by the following expression
(Kraus, 1983; Uhlman, 1976):

F(ρ̂, σ̂ ) = F(σ̂ , ρ̂) =
√
ρ̂1/2σ̂ ρ̂1/2. (1)

It equals unity if and only if ˆσ = ρ̂ (which is the perfect storage of the qubit’s
state), while it equals zero for the orthogonal initial and final states. In general,
the fidelity satisfies 0≤ F(σ̂ , ρ̂) ≤ 1. Above,σ̂ and ρ̂ represent the initial and
the final state of the qubit. There is also an alternative characterization of fidelity
(Uhlman, 1976) which proves to be equivalent with the definition in Eq. (1).

Here we report on the observation that the fidelity of the so-callednonideal
quantum measurements of the first kindcan result in thefidelity increaserelative to
the fidelity of the corresponding ideal measurements. This result is counterintuitive,
for the simple reason that—relative to the ideal measurements (Neumann, 1955)—
the nonideal measurements bearunavoidable uncertainty (ignorance)in the final
state ( ˆρ) of the qubit (Araki and Yanase, 1960; Wigner, 1952). Needless to say,
it is our classical intuitionwhich tacitly assumes that lack of information on the
system’s (qubit’s) state should imply decrease of fidelity relative to the situation(s)
in which there is no uncertainty. Simultaneously, we classically expect the entropy
increase to be manifested with the decrease of fidelity (Lloyd, 1989). We hereby
show that the rather unexpected increase of fidelity can be traced back to the
quantum parallelismin quantum information processing, in full analogy with the
quantum parallelism as defined in the quantum computing theory.

In Section 2 we give precise definition of a nonideal measurement, as well
as a precise formulation of the task to be performed. In Section 3 we show that
a nonideal measurements can lead to the fidelity increase. Section 4 contains
discussion of this and related nonclassical phenomena, while the conclusions are
given in Section 5.

2. NONIDEAL QUANTUM MEASUREMENTS

A “quantum operation” is defined as the map of the initial system’s state ˆσ

(Kraus, 1983):

E : σ̂ →
∑

n

Ânσ̂ Â†n, (2)

where the Ân are system operators which satisfy the completeness relation∑
n Ân Â†n = Î ; conversely, any map of this form is a quantum operation.

As a special kind of the quantum operations appear the so-called ideal quan-
tum measurements of the first kind (d’Espagnat, 1971; Neumann, 1955), for which
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Eq. (2) reads:

E : σ̂ →
∑

n

P̂nσ̂ P̂n, (3)

where the orthogonal projectorŝPn represent the eigenprojectors of the measured
observable, satisfying

∑
n P̂n = Î .

In the quantum information (and computation) issues, the quantum measure-
ment processes prove to be of substantial importance; e.g., as the (intermediate
or the final) steps in quantum computing algorithms, as the procedure of prepara-
tion of the qubits’ states, or as a formal analogue of the process of decoherence
(Dugić, 1996, 1997; Zurek, 1982, 1993), as well as in some quantum information
protocols. However, as it was pointed out by Wigner (1952), and later elaborated
by Araki and Yanase (1960), therealistic quantum measurements usually suffer
from unavoidable errors, i.e., from unavoidable uncertainty in the final state of the
measured object. Let us put this notion in the mathematical terms.

First, without loss of generality, consider the ideal quantum measurement of
the observablêSz—thez-component of the “spin” (qubit). The ideal measurement
of Ŝz is presented by (Neumann, 1955):

Û |↑〉|χ〉 = |↑〉|+〉, (4)

whereÛ represents the unitary (Schr¨odinger) evolution in time of the combined
system “object (qubit)+ apparatus (Q+ A),” the initial state|↑〉 is the eigenstate
of Ŝz for the value+h/2, for arbitrary initial state of the apparatus|χ〉 and we
omit unnecessary symbol of the tensor product. Similarly, for the initial state of the
object|↓〉which is the eigenstate of̂Sz for the value−h/2, the ideal measurement
is defined as:

Û |↓〉|χ〉 = |↓〉|−〉, (5)

while 〈+|−〉 = 0.
However, as it was emphasized by Wigner (1952), these expressions refer

directlyonly to the quantum measurements of theconstants of motion. Following
Wigner (1952), Araki and Yanase (1960) showed that the quantum measurements
of the observables which are not the constants of motion are possible, but only with
the limited accuracy. Actually, for thenonideal quantum measurementof Ŝz one
obtains (we introduce the normalization factors in the original expressions (Araki
and Yanase, 1960)):

Û |↑〉|χ〉 = (1− ε2
↑)

1/2|↑〉|+〉 + ε↑|↓〉|−〉, (6)

Û |↓〉|χ〉 = (1− ε2
↓)

1/2|↓〉|−〉 + ε↓|↓〉|+〉, (7)

for the initial states considered above, respectively. Subsequently Yanase (1961)
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was able to show that:

ε2
↑ + ε2

↓ = ε2 ≥ (8‖M̂x‖2)−1 (8)

whereM̂x represents an additive constant of motion of the apparatus; note that, as
the apparatus becomes more macroscopic, the lower bound ofε becomes smaller
(Araki and Yanase, 1960).

Now, relative to the ideal measurements presented by Eqs. (4) and (5), the
nonideal measurements introduceunavoidable errorε in knowing the value of the
measured quantity. Actually, as it directly follows from, e.g., Eq. (6), the object’s
final state reads:

ρ̂ ′ = tr A[Û |↑〉〈↑|⊗|〉〈χ |Û †] = (1− ε2/2)|↑〉〈↑|+ ε2/2|↓〉〈↓|, (9)

where we have used the equalityε↑ = −ε↓ = ε/
√

2, which follows from the ex-
pression Eq. (8) and from the normalization condition〈↑|〈χ |ÛÛ †|↓〈|χ〉 = 0.With
“ tr A” we denote the “tracing out” of the apparatus degrees of freedom. Physically,
this error is substantial: albeit the object is in an eigenstate of the measured ob-
servable (the eigenvalue ish/2), the measurement leads to the opposite (wrong)
result, giving the value−h/2 with nonzero probabilityε2/2. From theinformation-
theoretic point of view, this error introducesunavoidable uncertainty(ignorance)
about the object’s final state (i.e., instead of the “pure” state|↑〉〈↑|, the final state
is the mixed state given by Eq. (9)), which isclassically expected to give rise to the
fidelity decrease, relative to the fidelity of the ideal measurement for whichε = 0.

Surprisingly enough, we will show that this is not necessarily the case. Ac-
tually, we will show that the fidelity of the nonideal quantum measurement can
increase, giving therefore a counterintuitive result: having less control on the final
state of the system, one obtains better fidelity of the operation considered. In the
context of the task of storing qubit’s state(s), this result is of rather obvious interest.

3. NONIDEAL MEASUREMENTS CAN INCREASE THE FIDELITY

Let us first consider the cases studied in Section 2. And let us introduce the
indices “id” and “nonid” for the ideal and nonideal measurements, respectively.

From the expressions of Eqs. (4) and (5) for the ideal measurement ofŜz it
obviously follows that the final and the initial state are equal, ˆρ = σ̂ which gives
rise—for both expressions (4) and (5)—to the maximum fidelityF(σ̂ , σ̂ ) = 1.
However, for the nonideal measurements presented by Eqs. (6) and (7), the initial
and the final states are not equal anymore. Actually, e.g., from Eq. (6), it follows
that the final state of the qubit is given by Eq. (9), thus giving rise to the fidelity of
the measurement:

Fnonid ≡ F(ρ̂nonid, σ̂ ) = 〈↑|ρ̂nonid|↑〉1/2 = (1− ε2)1/2, (10)
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where we have used the symmetry property of fidelity (cf. Eq. (1)) and the fact that
the initial state ˆσ is the “pure” quantum state, ˆσ = | ↑〉〈↑ |. Now, for the difference
of the two fidelities we obtain:

1F ≡ Fid − Fnonid
∼= ε2/2 > 0, (11)

as one wouldclassically expect.
Let us now consider arbitrary initial “pure” state of the qubit:

|9〉 = α|↑〉 + β|↓〉, |α|2+ |β|2 = 1, (12)

and let us calculate the fidelities of the ideal and nonideal measurements ofŜz.
For the ideal measurement, the expressions Eqs. (4), (5) give for the final state

of the combined systemQ+ A:

Û |9〉|χ〉 = α|↑〉|+〉 + β|↓〉|−〉, (13)

which gives for the final state of the qubit:

ρ̂ ′id = |α|2|↑〉〈↑| + |β|2|↓〉〈↓|. (14)

Now, the fidelity of the ideal measurement reads:

F ′id = 〈9|ρ̂ ′id |9〉1/2 = [1− 2|α|2+ 2(|α|2)2]1/2. (15)

On the other side, for the nonideal measurement, after some simple algebra,
one obtains for the final state of the combined system:

Û |9〉|χ〉 = [α(1− ε2
↑)

1/2+ βε↓]|↑〉|+〉 + [β(1− ε2
↓)

1/2+ αε↑]|↓〉|−〉, (16)

which after the tracing out gives for the final state of the qubit:

ρ̂ ′nonid = |α(1− ε2
↑)

1/2+ βε↓|2|↑〉〈↑| + |β(1− ε2
↓)

1/2+ αε↑|2|↓〉〈↓|. (17)

The corresponding fidelity reads:

F ′nonid = 〈9|ρ̂ ′nonid|9〉1/2 = {|α|2 · |α(1− ε2/2)1/2− 2−1/2βε|2

+ |β|2 · |β(1− ε2/2)1/2+ 2−1/2αε|2}1/2. (18)

To simplify the expression Eq. (18) we treat complex numbersα andβ as the
vectors in plane, so defining the angleθ as cosθ = Eα · Eβ/|α| · |β|. Then Eq. (18)
reads:

F ′nonid = {1− ε2/2+ 2(|α|2)2− 2(|α|2)2ε2+ 2|α|2ε2− 2|α|2

− ε|α|3[8(1− |α|2)(1− ε2/2)]1/2 cosθ

+ ε|α|[2(1− |α|2)(1− ε2/2)]1/2 cosθ}1/2. (19)
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Fig. 1. The plot ofF ′2id − F ′2nonid against(|α|2, θ ), for the respective intervals [0, 1] and [0,π ], for the
two values ofε (note the different orientations of the figures): (a)ε = 10−3, and (b)ε = 10−10. The
values of the variables are in the horizontal plane. The shape of the plot is independent on the values
of ε: In the both cases appears that the given difference (and also the fidelity differenceF ′id − F ′nonid
is negativefor the following combinations of the intervals:{|α|2 ∈ (0, 0.5) andθ ∈ (0,π/2)}, as well
as for{|α|2 ∈ (0.5, 1) andθ ∈ (π/2,π )}. The maximum (minimum) value of the difference is of the
order of 10ε (0.1ε).

From Eqs. (15) and (19) we obtain:

F ′2id − F ′2nonid = ε2/2+ 2(|α|2)2ε2− 2|α|2ε2

+ ε|α|3[8(1− |α|2)(1− ε2/2)]1/2 cosθ

− ε|α|[2(1− |α|2)(1− ε2/2)]1/2 cosθ. (20)

Keeping in mind positivity of fidelity, the fidelity difference,F ′id − F ′nonid, is of
the same sign as the difference given by Eq. (20).

In Fig. 1 we give the plot ofF ′2id − F ′2nonid against(|α|2, θ ), for the respecting
intervals [0, 1] and [0,π ], for the two values ofε. As it is obvious from Fig. 1, the
shape of the plot is independent on the values ofε, while the maximum (minimum)
value(s) of the difference is of the order of 0.1ε (10ε).

From Fig. 1 we conclude that our classical intuition, which is confirmed by
Eq. (11), is also confirmed by Fig. 1,but only for special choiceof |α|2 andθ .
Actually, as it is obvious from Fig. 1, one has, for instance:

F ′nonid > F ′id , |α|2 ∈ (0, 0.5) and θ ∈ (0,π/2), (21)

which challenges our classical intuition.

4. INTERPRETATION OF THE FIDELITY INCREASE

The quantum operations (nonideal measurements) presented by Eqs. (6) and
(7), are “coherently superimposed” in the operation presented by Eq. (16). That
is, due to the linearity of the Schr¨odinger law, the two mutually independent
operations in Eqs. (6) and (7) are coherently superimposed in Eq. (16) This gives
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rise to the fidelity increase as presented by Eq. (21). This observation calls for
analogywith the quantum parallelismas defined in the quantum computation
theory (Grover, 1997; Kitaevet al., 1999; Shor, 1997). But this interpretation
leads to the following question: whether the fidelity increase can or cannot ever
be observed for the arbitrary initial “mixed state” (Neumann, 1955; d’Espagnat,
1971) (“incoherent mixture” of the initial states|↑〉 and|↓〉) of the qubit?

To answer this question we consider arbitrary initial “mixed state”:

σ̂ = W1|↑〉〈↑| +W2|↓〉〈↓|, W1+W2 = 1, (22)

and calculate the fidelities of both ideal and nonideal measurement ofŜz; note that
for W1 = 1 (W2 = 1) one obtains the case(s) studied above, i.e., the expression(s)
Eq. (4) (Eq. (5)).

Again, as it can be easily shown, the ideal measurement ofŜz does not change
the initial state of the qubit, thus giving rise to the maximum fidelity. However, for
the nonideal measurement, after some algebra one obtains for the final state of the
qubit:

ρ̂ ′′ = tr A[Û σ̂ |χ〉〈χ |Û †] = [W1(1− ε2/2)+W2ε
2/2]|↑〉〈↑|

+ [W2(1− ε2/2)+W1ε
2/2]|↓〉〈↓|. (23)

Therefore, fidelity in this case reads:

F ′′nonid = tr {ρ̂ ′1/2nonidσ̂ ρ̂
′1/2
nonid}1/2 = tr {σ̂ ρ̂ ′nonid}1/2

= W1{1− ε2/2+ (1−W1)ε2/2W1}1/2+ (1−W1)

×{1− ε2/2+W1ε
2/2(1−W1)}1/2 ≤ 1, (24)

where we used [ ˆσ , ρ̂ ′nonid] = 0, and we perceive the last inequality as obvious,
while equality refers only toW1 = W2 = 1/2. It is worth emphasizing that for
W1 = 1 (W2 = 1), the expression in Eq. (24) reduces to Eq. (10).

Therefore, for the “mixed” state ˆσ , onenever obtains the fidelity increase,
which justifies that the fidelity increase isultimatelydue to the coherent superpo-
sitions of the qubit’s states, Eq. (12) (and also due to linearity of the Schr¨odinger
law—cf. Eq. (16)). In other words, the classically unexpected fidelity increase is
caused by the quantum coherence, i.e., to the parallel quantum operations in the
coherent mixtures of the qubit’s states.

5. DISCUSSION

The main result of this paper is the fidelity increase due to nonideal quantum
measurements, as pointed out by Eq. (21). The interpretation given in the previous
section allows for analogy with the quantum parallelism as distinguished in the
quantum computing theory. To this end one may note that, while the quantum
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parallelism is a general feature of quantum computation (Grover, 1997; Kitaev
et al., 1999; Shor, 1997), the fidelity increase we point out refers to the limited case
of the pure state, cf. Eq. (21). Then the following reasoning may seem plausible:
since the fidelity increase does not refer to an arbitrary “pure” state|9〉, the
interpretation given in Section 4 should be considered incomplete, if not incorect.
But, we believe this conclusion to be wrong.

Instead, we maintain that our interpretation is of the general validity (i.e.,
applicable to any “pure” state of the qubit),while not requiringthe general in-
crease of fidelity for nonideal measurements. That is, the operations considered
do not require the fidelity increase per se. Rather, the fidelity increase should be
consideredto point tothe quantum parallelism, being its (classically unexpected)
consequence. Again, we can make analogy with the quantum parallelism in quan-
tum computing: quantum parallelism in quantum computing does not a priori
guarantee that any quantum-computation algorithm will be substantially more ef-
ficient than its classical counterpart per se. However, it is well-known that the major
motivation for research in quantum computing is exactly the fact that specific im-
plementations of a concrete quantum-computation algorithm can be shown to be
more efficient than any possible classical analogue. This, we believe, justifies the
full analogybetween the quantum parallelism in quantum computing, and in the
quantum-measurement-like quantum operations (e.g., decoherence) on a qubit.

The following question may at first sight seem reasonable: does the fidelity
increase can be used for achieving fidelity arbitrarily close to unity, by choosing a
“sufficiently nonideal” measurement, i.e., by choosing sufficiently bigε? But this
question hides a misinterpretation of our result. In the presumed case one would
have, at least as to the lower bound ofε (cf. Eq. (8)) to be a reasonable fraction of
unity. However, as the r.h.s. of Eq. (8) implies, the norm of the (bounded) observable
M̂x would have to be of the order of unity, which is physically unacceptable.
Actually, such observable would refer to amicroscopicsystem (here: apparatus),
in contradistinction to the requirement that the apparatus should be sufficiently
macroscopic (Araki and Yanase, 1960, 1961; d’Espagnat, 1971; Neumann, 1955;
Zurek, 1982). In other words, the use of the nonideal measurements in approaching
the equalityF(σ̂ , ρ̂) ∼= 1 would contradict applicability of the formulae used in
the above calculations (which refer only to the “macroscopic apparatus”).

Finally, our considerations bear full generality due to: (i) all the results con-
cerning the measurements ofŜz can be straightforwardly applied to the mea-
surements of arbitrary observable of a qubit, (ii) the quantum parallelism can be
observed only in comparison of the results (i.e., of the fidelities) for the “coherent”
(12) and for the “incoherent” (22) mixtures of thesame states, which is the reason
we do not calculate the fidelity for arbitrary mixed state of the qubit, and (iii)
the considerations can be straightforwardly extended to account for theN-qubit
systems. The latter circumstance can undoubtedly be of some practical interest in
quantum information research.
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6. CONCLUSION

It is expectable that the lack of information (uncertainty) about a system’s state
should be characterized by the fidelity decrease, relative to the situations in which
there is no uncertainty. In the context of the quantum measurement process, which
is a special kind of the so-called “quantum operations,” this classical expectation
indicates that fidelity of a nonideal quantum measurement should exhibit decrease,
relative to the corresponding ideal measurement. However, andcontrary to this
classical intuition, we show that the nonideal measurements can lead to thefidelity
increase. That is, the fidelity of the nonideal measurements can be greater than
the fidelity of the corresponding ideal measurements. Thiscounterintuitiveresult
can be traced back to thequantum parallelismin the quantum information pro-
cessing, in full analogy with the quantum parallelism as conventionally discussed
in the quantum computing theory. One may note that, as the quantum parallelism
underlies the efficient quantum computing algorithms, the quantum parallelism
underlies the classically unexpected increase of fidelity of the nonideal quantum
measurements.
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